Extensions 1→N→G→Q→1 with N=C6 and Q=C25

Direct product G=N×Q with N=C6 and Q=C25
dρLabelID
C25×C6192C2^5xC6192,1543

Semidirect products G=N:Q with N=C6 and Q=C25
extensionφ:Q→Aut NdρLabelID
C6⋊C25 = S3×C25φ: C25/C24C2 ⊆ Aut C696C6:C2^5192,1542

Non-split extensions G=N.Q with N=C6 and Q=C25
extensionφ:Q→Aut NdρLabelID
C6.1C25 = C23×Dic6φ: C25/C24C2 ⊆ Aut C6192C6.1C2^5192,1510
C6.2C25 = S3×C23×C4φ: C25/C24C2 ⊆ Aut C696C6.2C2^5192,1511
C6.3C25 = C23×D12φ: C25/C24C2 ⊆ Aut C696C6.3C2^5192,1512
C6.4C25 = C22×C4○D12φ: C25/C24C2 ⊆ Aut C696C6.4C2^5192,1513
C6.5C25 = C22×S3×D4φ: C25/C24C2 ⊆ Aut C648C6.5C2^5192,1514
C6.6C25 = C22×D42S3φ: C25/C24C2 ⊆ Aut C696C6.6C2^5192,1515
C6.7C25 = C2×D46D6φ: C25/C24C2 ⊆ Aut C648C6.7C2^5192,1516
C6.8C25 = C22×S3×Q8φ: C25/C24C2 ⊆ Aut C696C6.8C2^5192,1517
C6.9C25 = C22×Q83S3φ: C25/C24C2 ⊆ Aut C696C6.9C2^5192,1518
C6.10C25 = C2×Q8.15D6φ: C25/C24C2 ⊆ Aut C696C6.10C2^5192,1519
C6.11C25 = C2×S3×C4○D4φ: C25/C24C2 ⊆ Aut C648C6.11C2^5192,1520
C6.12C25 = C2×D4○D12φ: C25/C24C2 ⊆ Aut C648C6.12C2^5192,1521
C6.13C25 = C2×Q8○D12φ: C25/C24C2 ⊆ Aut C696C6.13C2^5192,1522
C6.14C25 = C6.C25φ: C25/C24C2 ⊆ Aut C6484C6.14C2^5192,1523
C6.15C25 = S3×2+ 1+4φ: C25/C24C2 ⊆ Aut C6248+C6.15C2^5192,1524
C6.16C25 = D6.C24φ: C25/C24C2 ⊆ Aut C6488-C6.16C2^5192,1525
C6.17C25 = S3×2- 1+4φ: C25/C24C2 ⊆ Aut C6488-C6.17C2^5192,1526
C6.18C25 = D12.39C23φ: C25/C24C2 ⊆ Aut C6488+C6.18C2^5192,1527
C6.19C25 = Dic3×C24φ: C25/C24C2 ⊆ Aut C6192C6.19C2^5192,1528
C6.20C25 = C23×C3⋊D4φ: C25/C24C2 ⊆ Aut C696C6.20C2^5192,1529
C6.21C25 = D4×C22×C6central extension (φ=1)96C6.21C2^5192,1531
C6.22C25 = Q8×C22×C6central extension (φ=1)192C6.22C2^5192,1532
C6.23C25 = C2×C6×C4○D4central extension (φ=1)96C6.23C2^5192,1533
C6.24C25 = C6×2+ 1+4central extension (φ=1)48C6.24C2^5192,1534
C6.25C25 = C6×2- 1+4central extension (φ=1)96C6.25C2^5192,1535
C6.26C25 = C3×C2.C25central extension (φ=1)484C6.26C2^5192,1536

׿
×
𝔽